Vous constatez une erreur ?
NaN:NaN
00:00
This presentation covers the design, characteristics and implementation of a spherical microphone array using 256 Mems cells (HOSMA). This HOSMA is designed for directional analysis of room acoustics at order 15. The array uses advanced techniques to capture spatial audio with high accuracy, enabling 3D acoustic analysis and sound field decomposition in the spherical harmonics (SH) domain. Design considerations include optimal microphone placement on the spherical surface, ensuring uniform spatial sampling and minimizing aliasing effects. The characteristics of the HOSMA are evaluated using simulations and real experiments. Implementation challenges, such as calibration and signal processing, are discussed. Applications in room acoustics, such as the estimation of directional room impulse responses (DRIRs) and sound source localization, are presented. They enable us to estimate the HOSMA's potential in both research and practical scenarios. The first developments in a research project using the HOSMA for machine-learning-based DRIR interpolation are also presented.
Dans le cadre du projet ANR HAIKUS (ANR-19-CE23-0023), l'IRCAM, le LORIA et le IJLRA organisent un atelier d'une journée sur les avancées méthodologiques pour la réalité augmentée audio et ses applications.
La réalité augmentée audio (RAA) consiste à intégrer des contenus sonores pré-enregistrés ou générés par ordinateur dans l'environnement réel de l'auditeur. L'audition joue un rôle essentiel pour comprendre notre environnement spatial et interagir avec celui-ci. La modalité auditive accroît l'engagement de l'utilisateur et enrichit l’expérience vécue dans les applications de réalité augmentée (RA), relevant en particulier des domaines de la création artistique, de la médiation culturelle, du divertissement et de la communication.
Les algorithmes de spatialisation sonore représentent des éléments clés dans la chaîne de traitement pour la RAA. Il s’agit de contrôler, en temps réel, la position et l’orientation des sources virtuelles et de synthétiser les effets de réverbération qui leur seront appliqués. Ces outils ont maintenant atteint un niveau de maturité et permettent de piloter des systèmes aussi divers que le rendu binaural tridimensionnel sur casque ou des réseaux de haut-parleurs massivement multicanaux. La précision du traitement spatial appliqué aux événements sonores virtuels est cependant essentielle pour assurer leur intégration sans hiatus perceptif dans l'environnement réel de l'auditeur. Pour atteindre ce niveau d'intégration et de transparence, des méthodes sont nécessaires pour identifier les propriétés acoustiques de l'environnement et ajuster les paramètres du moteur de spatialisation en conséquence. Idéalement, ces méthodes devraient permettre de déduire automatiquement les caractéristiques du canal acoustique, sur la seule base de de l’activité sonore des sources réelles présentes dans l'environnement réel (par exemple : voix, bruits, sons ambiants, sources en mouvement). Ces sujets font l'objet d'une attention croissante, en particulier à la lumière des progrès récents des approches basées sur les méthodes d’apprentissage machine dans le domaine de l'acoustique. En complément, les études perceptives permettent de définir le niveau d’exigence requis pour garantir une expérience sonore cohérente.
Comité d'organisation : Antoine Deleforge (INRIA), François Ollivier (MPIA-IJLRA), Olivier Warusfel (IRCAM)
6 décembre 2024
6 décembre 2024
6 décembre 2024
6 décembre 2024
6 décembre 2024
6 décembre 2024
6 décembre 2024
6 décembre 2024
Vous constatez une erreur ?
1, place Igor-Stravinsky
75004 Paris
+33 1 44 78 48 43
Du lundi au vendredi de 9h30 à 19h
Fermé le samedi et le dimanche
Hôtel de Ville, Rambuteau, Châtelet, Les Halles
Institut de Recherche et de Coordination Acoustique/Musique
Copyright © 2022 Ircam. All rights reserved.